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Abstract We analyze a systematic algorithm for the exact computation of the current cu-
mulants in stochastic nonequilibrium systems, recently discussed in the framework of full
counting statistics for mesoscopic systems. This method is based on identifying the current
cumulants from a Rayleigh-Schrödinger perturbation expansion for the generating func-
tion. Here it is derived from a simple path-distribution identity and extended to the joint
statistics of multiple currents. For a possible thermodynamical interpretation, we compare
this approach to a generalized Onsager-Machlup formalism. We present calculations for a
boundary driven Kawasaki dynamics on a one-dimensional chain, both for attractive and
repulsive particle interactions.

Keywords Current fluctuations · Nonequilibrium · Cumulant expansion

1 Introduction

We want to present and to illustrate a systematic scheme for the in principle exact computa-
tion of all possible current cumulants in Markov dynamics satisfying local detailed balance.
The algorithm is based on an identity between current and activity fluctuations, connecting
the time-antisymmetric with the time-symmetric fluctuation sector as is typical for a dynam-
ical large deviation theory in nonequilibrium systems. We concentrate here however on the
mechanical aspect of the method, how it can be seen as a modified Rayleigh-Schrödinger ex-
pansion with specific computable expressions of the cumulants. Its relevance is therefore in
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reliably producing also higher-order cumulants that can then be further analyzed for under-
standing the physics of some particular model. We will start that for an interacting particle
system with boundary driven Kawasaki dynamics.

As here we choose to emphasize the algorithm rather than its detailed numerical imple-
mentation, we focus on relatively small systems. Yet we feel excused for the moment as
exactly small open systems and their nonequilibrium fluctuations have been in the middle
of attention in the last years. They are intrinsically of relevance to nanoscale-engineering
and for certain cellular and molecular biological processes [1, 2]. Charge transport in nano-
electromechanical systems is often described in terms of Markov evolutions, and is a subject
of very active research [3–8]. First experiments were limited to measuring the mean current
or its variance at most, but now also third and higher order cumulants have become avail-
able, providing important information on quantum transitions [9, 10]. For life processes, for
instance in molecular motors or for ion-transport through membrane channels, one easily
reaches energy scales as low as a few kBT [11, 12]. Besides these cross-disciplinary as-
pects, the study of all these commonly called mesoscopic systems is important to unravel
the structure of nonequilibrium statistical mechanics itself.

Fluctuations cannot be ignored for small systems but rather carry signatures of impor-
tant physics. The computational challenge in this case is not so much to reach large system
sizes, but, for a fixed system, to obtain the fullest possible fluctuation patterns of the quan-
tity of interest for long time scales. Our results contribute to the larger effort of organizing
the computational side of the recent advances in nonequilibrium physics, cf. [13, 14]. These
theoretical results have often to do with fluctuation theory, as in the Jarzynski-Crooks rela-
tions [15, 16] or in the fluctuation theorems for the entropy production [17–23], and going
reliably beyond Gaussian characteristics in the nonequilibrium statistics is just a necessary
but often nontrivial prerequisite.

One of the traditional approaches to nonequilibrium solid state problems is the Keldysh
formulation in terms of nonequilibrium Green’s functions [24, 25]. Currents of any type
are obviously among the most important observables and their fluctuations are written in the
cumulants. The basic method of the present paper comes from calculations within full count-
ing statistics for small quantum systems [6, 7, 26–31]. We propose yet another derivation
for classical stochastic systems based on a single path-distribution identity, which allows
to discuss also joint current fluctuations. What follows can be seen as an adaptation to the
framework of Markov dynamics for the computation of joint current cumulants in classi-
cal interacting particle systems. In [21, 32–38] one finds similar treatments. Moreover, our
computational scheme aims at the same goal as in [39–41], but it yields exact results for
small systems. The core idea of the method is a sufficiently simple identity, (8) below, that
we use in combination with expansion techniques for eigenvalues. The novelty in our work
is then as follows:

(1) We use a nonequilibrium version of the Rayleigh-Schrödinger (RS) expansion to obtain
a systematic cumulant expansion for the current statistics, generalizing the approach
of [26] to also include joint fluctuations of different currents. This is particularly use-
ful for the numerical evaluation of higher-order cumulants (say from third-order on)
as finite-difference calculations generate more numerical errors. One hopes that they
are also within reach of experimental methods on real nonequilibrium systems [9, 10].
In that case they would be invaluable tools in any attempt of reverse engineering. The
RS expansion for (in general irreversible) Markov dynamics is computationally useful
as every order in the expansion employs the same basic information about the dynam-
ics. Since the generators of stochastic dynamics are not symmetric matrices, their set
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of eigenvectors might be incomplete. This is taken into account in the solution of the
problem, which involves the use of the group pseudo-inverse of stochastic matrices [42].

(2) In Sect. 4 we add a thermodynamic interpretation of the numerical procedure in terms
of the time-symmetric sector of nonequilibrium fluctuations. This lines up with the re-
cent introduction of the novel concept of traffic, which, roughly speaking, measures the
amount of dynamical activity in the system. This activity counts the number of all jumps
irrespectively of their direction and hence it is symmetric under time reversal [43–45].
It has also been considered in [37, 46].

(3) We illustrate the procedures for a boundary driven Kawasaki dynamics, for which an
exact or analytic solution is far beyond reach, see Sect. 3. It is interesting to discover
systematic tendencies in the role of attractive versus repulsive potentials for the current
statistics away from equilibrium.

The paper is organized as follows: In the next section we explain some basic identities
that lead to the formulation of the problem as an evaluation of a certain eigenvalue. Section 3
gives an explicit example where the method is applied to a boundary driven interacting par-
ticle system. Section 4 reflects further on the method from the point of view of the theory of
large deviations: we point out the role of a novel concept, that of traffic, in the interpretation
of the various terms. The paper closes with Appendices giving details on the method and its
numerical implementation.

2 Method

2.1 Current Fluctuations

We suppose a continuous time Markov jump process (Xt )t≥0 on a finite state space K with
M elements. The dynamics is specified by all transition rates k(η, ξ), from each state η to
each other ξ �= η, as summarized in the generator L, which is a M ×M matrix with elements

Lηξ = k(η, ξ) if η �= ξ
(1)

Lηη = −
∑

ξ

k(η, ξ)

Note that the diagonal elements equal minus the respective escape rates. We assume irre-
ducibility in the sense that all states are reachable from any other state in some finite time.
Hence, there is a unique stationary distribution ρ. We are mostly interested in breaking the
detailed balance condition, driving the process outside equilibrium; see Appendix A for
some formulation.

The matrix L generates the stochastic evolution in the sense that

d

dt
〈f (Xt)〉 = 〈(Lf )(Xt)〉

for all vectors f : K → R. The brackets 〈·〉 are averages both for the random (as yet un-
specified) initial conditions as over the stochastic trajectories. The Markov process (Xt ) is
a jump process in the sense that the trajectories are piecewise constant (in time) with jumps
Xt = η → Xt+ = ξ from some state η to some state ξ at random moments t . We consider
the stationary process starting from ρ.
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We consider each ordered pair of connected states b = (η, ξ) and its inverse is −b =
(ξ, η). For a given trajectory ω = (Xt ,0 ≤ t < T ), over some time-span T we have a
microscopic current dJb(t) = +1 when the state jumps at time t over the bond b, while
dJb(t) = −1 when the state jumps over the bond −b. The time-integrated current

Jb(ω) =
∫ T

0
dJb(t) (2)

thus counts the number of net jumps over the oriented bond b in the time span [0, T ]. Note
that the dependence on T in the left-hand side of (2) is not explicitly indicated. If we look
at the stationary state, we should take the expectation of (2) and divide by T to get the flux
(per unit time). In the stationary state, the expected current over the bond b and per unit time
equals jb = ρ(η)k(η, ξ) − ρ(ξ)k(ξ, η).

The main reason to consider all these currents like in (2) on the finest scale of transitions
and the complexity of the full joint fluctuations, is to be able to move to arbitrary and more
coarse-grained scales of description. In applications, the physical currents are all obtained
by combinations of these currents over bonds. For example, an interesting current in a lattice
system might count the passage of particles from one given site to another. In this case the
current is rather of the form

JB =
∑

b∈B

Jb (3)

where B then includes all b = (η, ξ) from a state η with a particle in the first site to a state
ξ where the particle has moved to the second site (the ensemble −B includes all bonds −b

of the opposite transitions). This will in fact be our main example (Sect. 3).
We can formalize that: To keep the discussion as general as possible, but with an eye

on the actual application, we consider a partition of all ordered bonds (or connections) b’s
consisting of sets B,B ′, . . . for which B,−B,B ′,−B ′, . . . are mutually non-overlapping.
The fully microscopic description is recovered when each of these sets contains exactly
only one bond.

We are interested in understanding and computing the joint fluctuations of the cur-
rents JB , properly rescaled as T ↑ ∞. So for example, we want to determine the covariances

CT
BB ′ = 1

T

[〈JBJB ′ 〉 − 〈JB〉 〈JB ′ 〉] (4)

in the large time T limit for B and B ′, which corresponds to the steady state regime. From
now on, the bracket-expectations 〈· · · 〉 refer to the mathematical expectation in the assumed
unique stationary process. Higher-order cumulants are also important, for example to deter-
mine the deviation from Gaussian behavior.

In general, the computation of these cumulants like in (4) involves detailed information
about the time-autocorrelation functions. This information is hidden in the spectrum of the
generator L. What we will do amounts to extract that information from a systematic nu-
merical scheme. As a further result expressions are obtained for these cumulants in terms
of expectations of specific single-time observables under the invariant distribution, which
allows also to see relations between the various cumulants and what governs them.

2.2 General Identity

The method of computing the cumulants for the currents starts from a general identity (8)
that relates the current fluctuations with fluctuations of occupation times.
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We fix a set of numbers σ = (σB). The cumulant-generating function for the joint fluctu-
ations of the selected currents JB is then given by

gT (σ ) = 1

T
log〈e∑

B σBJB 〉 (5)

By definition, the derivatives of gT (σ ) at σ = 0 give us all possible cumulants. For example
the second (partial) derivatives with respect to σB,σB ′ give (4). We therefore want to obtain
an expression of gT (σ ) as a Taylor-expansion in the σB ’s, for T → +∞.

In order to do so and given the original Markov process with rates k(η, ξ) we now
construct a new Markov process with generator Lσ , where the rates relative to bonds
b = (η, ξ) ∈ B and −b = (ξ, η) ∈ −B are

�(η, ξ) = k(η, ξ) eσB

�(ξ, η) = k(ξ, η) e−σB
(6)

We further define the vector

V (η) =
∑

B

∑

ξ :(η,ξ)∈±B

k(η, ξ)[e±σB − 1] (7)

where the sign in the exponent depends on whether (η, ξ) = ±b for a selected bond b.
The generating function (5) can be rewritten via the identity

〈e∑
B σBJB 〉 = 〈e

∫ T
0 V (Xt )dt 〉σ (8)

where the last average is over the Markov process with rates �(η, ξ), hence depending on σ .
To prove (8) we note that in going between the two averages 〈·〉 and 〈·〉σ there is a density

eQ(ω),

〈F(ω)〉 = 〈F(ω)eQ(ω)〉σ (9)

that is given by

Q(ω) =
∑

t

log
k(Xt ,Xt+)

�(Xt ,Xt+)
−

∫ T

0
dt

∑

ξ

[k(Xt , ξ) − �(Xt , ξ)]

where the first sum is over all jump times t in ω where the state changes Xt → Xt+ , see for
example Appendix 2 of [47] for mathematical details. As a consequence and via (6),

Q(ω) = −
∑

B

σBJB +
∫ T

0
V (Xt)dt

Substituting F = exp
∑

B σBJB into (9) gives the result (8).
We remark that (8) shows that the current fluctuations can be expressed in terms of oc-

cupation time fluctuations in a tilted path-space measure, see also Sect. 4. It is not a new
observation, see for instance [21, 36] for very related although less explicitly stated consid-
erations. First we continue with its exploitation for computational purposes.

If one has only one set B with σB = λ �= 0, the current generating function simplifies to

gB
T (λ) = 1

T
log〈eλJB 〉 (10)
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The identity (8) obviously remains valid, now with

VB(η) = [eλ − 1]
∑

(η,ξ)∈B

k(η, ξ) + [e−λ − 1]
∑

(ξ,η)∈−B

k(ξ, η) (11)

2.3 Feynman-Kac Formula

The right-hand side of (8) involves the single-time observable V , in contrast with a current
being a double-time function. The V can therefore be taken as a potential (diagonal matrix)
V in the following sense: given the matrix L = Lσ + V,

lim
T

1

T
log〈e

∫ T
0 V (Xt )dt 〉σ = emax

L (12)

where emax
L is the largest eigenvalue (in the sense of its real part) of L.

The asymptotic formula (12) is the limit of what is known as the Feynman-Kac formula.
For our context, one finds a proof of it in Appendix 2 of [47]. As a result, the current
cumulants can be read from the Taylor-expansion of the eigenvalue emax

L with explicitly
known matrix

L = L + R, R = Lσ − L + V

with R having non-zero elements only for the pairs (η, ξ) in some ±B with σB �= 0. More
precisely, for b = (η, ξ) ∈ B ,

Rηξ = k(η, ξ) [eσB − 1]
(13)

Rξη = k(ξ, η) [e−σB − 1]

Since we required that an ensemble of transitions B does not overlap with any other B ′

or −B ′, we can decompose the matrix R in a convenient sum of matrices EB(σB) and
E−B(σB), where each matrix EB has non-zero elements equal to k(η, ξ) eσB only for (η, ξ) ∈
B , and similarly each matrix E−B has non-zero elements equal to k(ξ, η) e−σB only for
(ξ, η) ∈ −B . Thus,

R =
∑

B

[
EB(σB) − EB(0) + E−B(σB) − E−B(0)

]
(14)

We finally remark here that the maximum eigenvalue emax
L is simple, which follows again

from a Feynman-Kac formula saying that

〈e
∫ T

0 V (Xt )dt δXT ,ξ 〉σ,X0=η = (eT L)η,ξ ≥ 0

By the irreducibility assumption, the left-hand side is in fact strictly positive (for any T > 0
and V ), hence the right-hand side is a matrix with strictly positive entries. Therefore, the
Perron-Frobenius theorem implies that L has a unique maximum eigenvalue. Moreover, the
right and left eigenvectors of that largest eigenvalue of L have strictly positive coordinates.
Exactly all the same is true for the generator L.
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2.4 Expansion

From the previous discussion it is clear that R goes to zero with the σB ’s. Moreover, there are
no cross-terms containing mixed derivatives of R with respect to the σB ’s. As we recognize
the cumulants of the current distribution from the Taylor-coefficients in the eigenvalue emax

L ,
it is natural to write

R =
∑

B

(
σB L(1)

B + σ 2
B L(2)

B + · · · )

over the order in the σB ’s. Then, for each n = 1,2, . . . and B

L(n)
B = 1

n!
[
EB(0) + (−1)nE−B(0)

]

This means that all odd terms n!L(n)
B are the same matrix EB(0)−E−B(0), and that all terms

n!L(n)
B with n even are equal to EB(0) + E−B(0).
From the RS perturbation expansion, see Appendix B, we obtain the following cumu-

lants. It is important to note that the computation proceeds always from the same basic
ingredients. The input consists of the stationary distribution ρ and the expression for the
pseudo-inverse of L, see below. Then, all cumulants follow from an exact numerical calcu-
lation. More details on the algorithm are in Appendix B.

2.4.1 First Order

As needed, the formula for the first order cumulant corresponds to the expectation of the
current,

jB = lim
T ↑+∞

1

T
〈JB〉 = 〈ρ|L(1)

B |1〉 (15)

where we use the Dirac notation for left and right eigenvectors: 〈ρ| is the density giving the
steady state occupation probabilities of the states, and |1〉 is a column vector of 1’s. They
are the left and right eigenvectors of L, with maximal (always in the sense of real part)
eigenvalue e0 = 0.

2.4.2 Second Order

The expression for second order gives the variance

CBB = lim
T ↑+∞

CT
BB = 2 〈ρ|(L(2)

B − L(1)
B G L(1)

B )|1〉 (16)

for the current jB over bonds with field σB , and the covariance (4)

CBB ′ = lim
T ↑+∞

CT
BB ′ = −〈ρ|(L(1)

B G L(1)

B ′ )|1〉 − 〈ρ|(L(1)

B ′ G L(1)
B )|1〉 (17)

if B �= B ′. The matrix G is the pseudo-inverse of the matrix L in the sense of Drazin [42],
see Appendix A.
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2.4.3 Third and Fourth Cumulant

For the higher-order cumulants we restrict to the condition of a single global current, as in
(10) and (11). In this case, we have a single ensemble B and the identity (8) reduces to

〈eλJB 〉 = 〈e
∫ T

0 VB(Xt )dt 〉λ
As a result, the analogue of (12) is verified for the matrix L = L + R with R = EB(λ) −
EB(0) + E−B(λ) − E−B(0). By expanding the exponential around λ = 0, we write

R =
+∞∑

k=1

λk L(k) (18)

and the cumulants are obtained from the scheme outlined in the Appendix B.
The third cumulant of the current JB over bonds b ∈ B is then

C(3) = 3! 〈ρ|[L(3) − jB L(1)G2 L(1) + L(1)GL(1)GL(1)

− L(1)GL(2) − L(2)GL(1)
]|1〉 (19)

and the fourth cumulant is

C(4) = 4!
〈
ρ

∣∣∣∣

[
L(4) − L(2)GL(2) − Cbb

2
L(1)G2 L(1) − (jB)2 L(1)G3 L(1)

+ L(1)GL(2)GL(1) − L(1)GL(1)GL(1)GL(1)

− L(3)GL(1) − L(1)GL(3)

+ L(2)GL(1)GL(1) + L(1)GL(1)GL(2)

− jB

(
L(2)G2 L(1) + L(1)G2 L(2)

)

+ jB

(
L(1)GL(1)G2 L(1) + L(1)G2 L(1)GL(1)

)]∣∣∣∣1
〉

(20)

Note the symmetry in the terms: when a sequence of matrices is not palindrome, there is
also its reversed one.

3 Example

We consider a generalization of the symmetric exclusion process (SEP), in which, besides
via the exclusion principle, particles are also interacting with their nearest neighbors at a
finite reservoir temperature β−1. Let us consider a lattice gas on the sites {1, . . . ,N}, where
a configuration is an array of occupations, η(i) = 0,1 for 1 ≤ i ≤ N . The state space is thus
K = {0,1}N , with M = 2N different states. One can think of particles (and holes) hopping
in a narrow and small (effectively homogeneous) channel. The specific calculation below
has been done for a relatively small system where N = 8. We comment on size-dependence
of the algorithm in Appendix C.
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For the dynamics there are two modes of updating: In the bulk, a particle can jump to
nearest neighbor sites. Then, the occupation over a nearest neighbor pair of sites is ex-
changed. For a transition η → ξ of this kind we take a rate of the form

k(η, ξ) = exp

[
−β

2
(H(ξ) − H(η))

]
(21)

where H is the energy function

H(η) = −ε

N−1∑

i=1

η(i)η(i + 1) (22)

for some parameter ε. Thus, only pairs of particles occupying nearest neighbor sites have an
energetic contribution.

At the boundaries one has the second kind of updating. At site i = 1 particles can be
exchanged with an external reservoir having chemical potential α/β . In the case of a particle
leaving the system (η(0) = 1 → ξ(0) = 0) the rate is given by

k(η, ξ) = exp

[
−α

2
− β

2
(H(ξ) − H(η))

]
(23)

while a particle enters into the system at site i = 1 with rate

k(η, ξ) = exp

[
α

2
− β

2
(H(ξ) − H(η))

]
(24)

We focus on the time-integrated current J passing through the site i = 1, which increases
by 1 every time a particle enters there from the reservoir and decreases by 1 every time a
particle leaves the system from there. As explained in previous sections, this is the sum of all
microscopic currents Jb over bonds b connecting a state η with η(1) = 0 to another state ξ

with ξ = η on all sites except ξ(1) = 1. At the other boundary site i = N a similar structure
may be imposed, with chemical potential α′/β .

The model is a boundary driven Kawasaki dynamics, reducing to boundary driven SEP
for β = 0. This infinite temperature case is completely solved concerning current fluctua-
tions in [48, 49]. If α = α′, then it is easily checked that the model satisfies the condition of
detailed balance with respect to the grand-canonical distribution for energy (22) and chemi-
cal potential α/β . If however α �= α′ then the system is driven out of equilibrium: the differ-
ence in effective chemical potential between reservoirs generates a particle current through
the system. It is a fluctuating current and we study here its cumulants. For other models,
similar questions have been addressed for example in [50, 51]. Studies on the density fluc-
tuations for the boundary driven exclusion process are in [52, 53].

For simplicity, we set α′ = 0 and drive the system by varying only α and β . The case
α > 0 thus corresponds to a reservoir that pushes particles from the left into the system,
forcing a positive stationary current j . The case α < 0 instead corresponds to a left reservoir
that tends to remove particles. As we will see, the two situations are definitely not the mirror
image of each other (unless β = 0).

Since the product βε is what matters in the transition rates, we simply set ε = 1 and
we use the possibility β < 0 for characterizing repulsive potentials. Particles instead attract
each other for β > 0. Particle interactions very much complicate the model which is no
longer analytically tractable. We use the above formalism to evaluate the current cumulants
for different parameter values. Interestingly, interactions induce qualitatively novel behavior
for the current statistics.
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Fig. 1 (Color online) First four cumulants of the current distribution as a function of α, for 5 values of the
interaction “strength” β (see the legend). Note that for β = 0 (SEP) odd cumulants are antisymmetric func-
tions of the driving, while even cumulants are symmetric functions. This is due to a particle-hole symmetry,
which is lost for interacting particles

3.1 Mean Current

The mean current j as a function of α and for several β’s is shown in Fig. 1(a). For a given
β , j increases with α, linearly around α = 0, as expected close to equilibrium. For each
α > 0 the mean current is maximal for a repulsive interaction (β < 0), see the two examples
in Fig. 2(a). In general, the mean current j is not antisymmetric with respect to α, and its
value in α can be very different from −j in −α.

For β → −∞ the problem can be mapped into the dynamics of non-interacting dimers
“(0,1)” and of 0’s. In this limit the system is somewhat like a SEP with 1’s replaced by
dimers, and one thus expects a finite mean current. On the other hand, for β → +∞, parti-
cles stick together and it becomes more and more difficult for a hole (vacancy) to get in, to
reach the bulk and finally to reach the other boundary of the channel. The hole essentially
performs a random walk with an open left boundary before eventually reaching the system
at the right boundary. If more than one hole enters into the system, there is a good chance
that holes stick, further reducing the energy of the system, and their own mobility and j as
well. Thus, for β → ∞ we expect j → 0. These scenarios are qualitatively well confirmed
in Fig. 2(a).

For β = 0 one has the well-studied driven SEP. In this case the current is antisymmetric
with α, like all odd cumulants, because of a corresponding particle/hole symmetry.
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Fig. 2 (Color online) First four cumulants of the current distribution as a function of β , for 5 values of the
driving α (see the legend). Odd cumulants are identically zero when the system is in equilibrium (α = 0)

3.2 Variance

The second cumulant of the current distribution is its variance. For β = 0 the variance is
symmetric with α (as every other even cumulant), while for all other cases it displays a non-
trivial dependence on α and β , see Figs. 1(b) and 2(b). For eβ � 1 (see β = 4 in Fig. 1(b))
the variance, as the current, can reach very small values, confirming the scenario proposed
above.

3.3 Third and Fourth Cumulants

As for the current, for β = 0 (SEP) the third cumulant of the current is antisymmetric with
α, see Fig. 1(c). In general, however, it is a complicated function of α and β , as evidenced
by Fig. 2(c). For example, in contrast with the mean j , it can be a non-monotonous function
of α. Similar arguments apply to the fourth cumulant, see Fig. 1(d) and Fig. 2(d). The third
and the fourth cumulant also appear going to zero for eβ � 1.

4 Traffic

Systematic perturbation techniques better be accompanied by a larger theoretical under-
standing. A major step in the analysis of the problem at hand that proceeds the numerical
algorithm is contained in the simple path-distribution identity (8). On the left-hand side,
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this identity involves an average over paths ω in the original process, with probabilities
Prob(ω). The respective probabilities in the tilted space (with rates (6)) can be written as
Probσ (ω) = e−Q(ω) Prob(ω), with relative path-space action Q. Since on the left-hand side
of identity (8) we have a current generating function, a time-antisymmetric quantity is in-
volved. On the other hand, on the right-hand side of (8) only a potential V appears, i.e., a
quantity depending only on the states and thus insensitive to time-reversal. Hence, the choice
of the tilted Markov process is exactly such that the change in the time-antisymmetric part
of the path-space action equals the appropriate sum over currents. This is why the exponent
in the right-hand side of (8) contains a time-symmetric function only.

Such considerations are typical of the Lagrangian approach to nonequilibrium statistical
mechanics as pioneered by Onsager and Machlup, [54]. Here however we are not even close
to equilibrium. We thus move on a somewhat generalized formalism that remains quite sim-
ple for finite state space Markov processes. Nevertheless the structure of time-symmetric
versus time-antisymmetric fluctuations is possibly important for nonequilibrium thermo-
dynamics, if only to identify the relevant thermodynamic potentials, cf. [43–45]. Such an
identification proceeds via a dynamical fluctuation theory, in which we next situate the main
identity (8).

In order to rewrite (8) in another convenient form, we define occupation times as

μη(ω) = 1

T

∫ T

0
dt δXt ,η

that the path ω = (Xt ,0 ≤ t < T ) spends in state η. Then, the exponent in the right-hand
side of (8) equals

∫ T

0 V (Xt)dt = T
∑

η V (η)μη(ω) or,

〈e∑
B σBJB 〉 = 〈eT

∑
η V (η)μη 〉σ (25)

The current statistics is therefore obtained when one knows the large deviation rate function
I σ for the occupation times,

Probσ [μη ≈ p(η),∀η] ∼ e−T Iσ (p), T ↑ +∞
for the modified dynamics (6):

lim
T

1

T
log〈e∑

B σBJB 〉 = sup
μ

(μ · V − I σ (μ)) (26)

We have in mind here the application of the theory of large deviations as pioneered in [55]
for Markov processes.

In that last variational expression (26), the potential V also depends on σ . Let us intro-
duce the antisymmetric form σ(η, ξ) = σB for (η, ξ) = b and σ(ξ, η) = −σ(η, ξ). Then, the
change (6) from the original rates k(η, ξ) to the new rates �(η, ξ) adds a further driving (in
the spirit of local detailed balance): from (7), the term

μ · V =
∑

η

μ(η)V (η)

=
∑

η

μ(η)
∑

ξ

k(η, ξ)[eσ(η,ξ) − 1]

= 1

2

∑

η,ξ

[τμ,�(η, ξ) − τμ,k(η, ξ)] (27)
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is an expected excess traffic, defined for rates k as

τμ,k(η, ξ) = μ(η) k(η, ξ) + μ(ξ) k(ξ, η)

and similarly for rates �, see [43–45]. The traffic expresses a time-symmetric kind of dy-
namical activity over the bond b = (η, ξ). In fact, all cumulants of the expansion in Sect. 2.4
contain the term

n!〈ρ|L(n)
B |1〉 =

{
jB for n odd

τB for n even

with expected current over bonds b ∈ B

jB = 〈ρ|[EB(0) − E−B(0)]|1〉
and with corresponding expected traffic

τB = 〈ρ|[EB(0) + E−B(0)]|1〉
For instance, the first term on the right-hand-side of (16) is the stationary traffic τB , while
the second term can be interpreted as a zero-frequency autocorrelation function.

We stress that the traffic τB is symmetric under the exchange η ↔ ξ , while the current jB

is antisymmetric. In other words, the traffic adds a time-symmetric aspect to the evaluation
of the dynamical activity. Finally, note that the following identity holds,

〈ρ|R|1〉 =
∑

B

[
τB (coshσB − 1) + jB sinhσB

]
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Appendix A: Markov Generator and Its Normality

The operator L that generates the Markov dynamics is a M × M matrix, and its spectral
properties appear in the expansion for the cumulants (see more in the next appendix). It is
important to realize some important changes with respect to equilibrium. For an equilibrium
process with reversible distribution ρ > 0 there is detailed balance,

ρ(η)Lηξ = ρ(ξ)Lξη

Equivalently, the matrix

Hηξ = √
ρ(η)Lηξ

1√
ρ(ξ)

is then symmetric and hence diagonalizable with a complete orthonormal set of eigenvectors.
The matrix H is obtained from L via a similarity transformation H = Q−1LQ with here,
and that is essential, a diagonal similarity matrix Q. In other words, we easily find a scalar
product for which the eigenvectors of a detailed balance generator are orthonormal. All that
need not be possible for nonequilibrium processes.
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A central notion here is that of normality: a matrix is normal if and only if it commutes
with its adjoint if and only if it has a complete orthonormal set of eigenvectors. Detailed
balance generators are similar with diagonal Q to normal matrices while nonequilibrium
processes have generators that need not be similar to normal matrices at all. When such a
generator is similar to a normal matrix, then it is diagonalizable and we can work with a
bi-orthogonal family of left/right eigenvectors. The following example illustrates some of
these points.

Take the fully symmetric 3-state Markov process, i.e. with all rates equal to 1, and perturb
it obtaining the generator

⎛

⎝
−2 − f + g 1 + f 1 − g

1 − f −2 + f − h 1 + h

1 + g 1 − h −2 − g + h

⎞

⎠

in the region |f |, |g|, |h| < 1. The condition of detailed balance is satisfied on the surface
f +g+h+fgh = 0. The nature of the spectrum depends on the sign of D = fg+f h+gh:
if D < 0, then the generator is diagonalizable and has real eigenvalues; if D = 0 and at least
one of the f,g or h is non-zero, then the matrix is not diagonalizable; if D > 0 then it is
diagonalizable with complex eigenvalues. In particular, all three cases occur arbitrarily close
to the reference equilibrium f = g = h = 0.

One consequence of the above facts directly concerns the expansion and calculation of
the cumulants following the scheme of Appendix B. We cannot simply rely on making
use of some of the standard tools of quantum mechanical calculation, like decomposition
in an orthonormal basis. An important example concerns the calculation of the pseudo-
inverse as in (16)–(17). When we still have a decomposition of the unity in terms of left/right
eigenvectors, then the pseudo-inverse G can be obtained from

G = (I − P )
1

L
(I − P ) =

M−1∑

v=1

|w(0)
v 〉 1

e
(0)
v

〈ρ(0)
v |

with 〈ρ(0)
v | and |w(0)

v 〉 left and right eigenvectors of L with eigenvalue e(0)
v < 0, and where

P ≡ |1〉〈ρ|
is the projection on the vector space of constant functions (therefore I − P is the projection
on the space orthogonal to them). In our general case, we employ the group inverse, a special
case of Drazin inverse, see [42]. Its role for the computational theory of Markov processes
has been advocated in [56]. The group inverse of L is the unique solution G of the equation

LGL = L, GLG = G, LG = GL

As will appear in the next section, and as visible already in (16)–(17) and (19)–(20), that
pseudo-inverse appears in the cumulant expansion.

A final important difference between symmetric versus non-symmetric matrices (up to
a diagonal similarity transformation) concerns the application of a variational principle to
characterize the maximal eigenvalue. For example, in quantum mechanics one usefully em-
ploys the Ritz variational principle for Hamiltonians (Hermitian matrices) and for finding
the ground state energy. We are not aware of an extension of that Ritz variational method or
of a more general minimax principle to non-Hermitian matrices. The only variational char-
acterization that seems to remain goes indirectly via the relation of the largest eigenvalue to
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a suitable generating function, like in (12), which itself obtains a variational expression in
terms of a large deviation rate function, like in formula (26).

Appendix B: Rayleigh–Schrödinger Expansion: The Algorithm

We give a review of the expansion that is used to compute the leading orders in the maximal
eigenvalue. We refer to pages 74–81 in the book of Kato [59], for full details and for a
rigorous treatment.

The RS expansion finds its origins in quantum mechanical problems of time-independent
perturbation theory [60–62]. In contrast with the situation in quantum mechanics or with the
case of detailed balance, we have in general no scalar product for which L has an ortho-
normal basis of eigenvectors. In many cases in nonequilibrium, we do have a bi-orthogonal
family of M eigenvectors (instead of the orthonormal family in quantum mechanics) but it
also happens that the generator is not diagonalizable and that we have no appropriate basis
to express most easily the expansion. Fortunately, all that is not necessary and the expansion
can proceed in a more general way. One simplifying feature is that the maximal eigenvalue
that we need to compute is simple, as shown in Sect. 2.3. For the purpose of the present
Appendix, we also make the simplification that only one σB = σ �= 0.

The starting point is the M × M matrix L + R that we write in expansion

L = L + R =
∞∑

k=0

σ k L(k), L(0) = L (28)

The unperturbed generator L has a resolvent r(κ) = (L − κ)−1 with Laurent series around
κ = 0 given by

1

L − κ
= − 1

κ
P +

∑

m=0

κmGm+1 (29)

for the projection P = |1〉 〈ρ| on the eigenspace of eigenvalue zero, and G the pseudo-
inverse in the sense of Drazin as we had in the previous section.

The resolvent for L is

r(σ, κ) = 1

L − κ

defined for all κ not equal to any of the eigenvalues of L. It can be written as a power series
in σ around (29):

r(σ, κ) = r(κ) +
+∞∑

n=1

σn r(n)(κ) (30)

with

r(n)(κ) =
∑

ν1+···+νp=n

(−1)pr(κ)L(ν1)r(κ)L(ν2) · · · L(νp)r(κ)

where the sum is over all 1 ≤ p ≤ n, νi ≥ 1. On the other hand, by Cauchy’s residue theorem

e(σ ) = − 1

2πi
Tr

∮

Γ

κ r(σ, κ)dκ (31)
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for a circle Γ enclosing zero but no other eigenvalues of L. Upon substituting (30) into (31)
we obtain

e(σ ) = − 1

2πi
Tr

∮

Γ

κr(κ)

+∞∑

p=1

[ − R r(κ)
]p

dκ (32)

where R of course depends on σ . Since d
dκ

r(κ) = r(κ)2, we have

d

dκ

[
R r(κ)

]p = R r(κ) · · · R r(κ)R r(κ)2

+ R r(κ) · · · R r(κ)2 R r(κ)

+ · · · + R r(κ)2 · · · R r(κ)R r(κ)

Observe now that the trace and the integration commute so that (32) becomes

e(σ ) = − 1

2πi
Tr

∮

Γ

κ

+∞∑

p=1

1

p

d

dκ

[ − R r(κ)
]p

dκ

and after integration by parts

e(σ ) = 1

2πi
Tr

∮

Γ

+∞∑

p=1

1

p

[ − R r(κ)
]p

dκ

or

e(σ ) = − 1

2πi
Tr

∮

Γ

log
[
1 + R r(κ)

]
dκ (33)

Expanding the logarithm with (28) makes the expansion of the maximal eigenvalue

e(σ ) =
+∞∑

n=1

σne(n) =
+∞∑

n=1

σn C(n)

n! (34)

for

e(n) = 1

2πi
Tr

∑

ν1+···+νp=n

(−1)p

p

∮

Γ

L(ν1)r(κ) · · · L(νp)r(κ)dκ (35)

We finally substitute the series (29) and perform the integral again with the residue theorem
to get the result

e(n) =
n∑

p=1

(−1)p

p

∑

ν1+···+νp=n

k1+···+kp=p−1

Tr L(ν1)S(k1) · · · L(νp)S(kp) (36)

where S(0) = −P and S(k) = Gk . The last formula can be written more explicitly obtaining
the different orders C(n) = n! e(n) as in Sect. 2.4. As an example, let us show how to compute
the cumulant of order n = 2. The possible cases in the first sum of (36) are then p = 1 and
p = 2.

For p = 1 the second sum can only have ν1 = 2 and k1 = 0, hence the contribution is
−Tr L(2)S(0). It is convenient to use the cyclic property of the trace operator TrAB = TrBA,
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and the definition S(0) = −P to rewrite the term as TrP L(2). In general, given a set of left
eigenvectors 〈ρ�| and right eigenvectors |w�〉, for the trace one has TrA = ∑

� 〈ρ�|A|w�〉.
Here, the projection P on the 0-th eigenvectors (〈ρ| and |1〉) simplifies this term to
〈ρ|L(2)|1〉.

The only combinations of two numbers summing up to p = 2 is (ν1 = 1, ν2 = 1),
while there are two choices (k1 = 1, k2 = 0) and (k1 = 0, k2 = 1) summing up to
p − 1 = 1. The former case corresponds to 1

2 Tr L(1)S(1)L(1)S(0) = 1
2 Tr L(1)GL(1)(−P ) =

1
2 Tr(−P L(1)GL(1)), which is equal, according to previous arguments, to − 1

2 〈ρ|L(1)GL(1)|1〉.
The same is true for the second term 1

2 Tr L(1)S(0)L(1)S(1), and their sum cancels the fac-
tor 1/2. Hence, overall one has the second cumulant given in (16).

Appendix C: Numerical Scheme

We have shown that all that is required for the computation of cumulants, regardless of their
order, is the information on the stationary distribution 〈ρ| and on the group inverse of the
generator, i.e. the matrix G. An efficient computation of G thus enables really making use
of our formulas for the cumulants, like in (15)–(17), (19), and (20). Given G and ρ, each
cumulant is computed just by some matrix multiplications. The estimate of the group inverse
of a generator L is discussed in section 5 of [56] and in [57]. In the computations carried
out in this work, it turned out that

G = P + (L − P )−1

was the most stable way of computing G for all parameter values. This formula derives most
conveniently by using the properties of the so called fundamental matrix, see [58].

However, for systems with a large number of degrees of freedom, it is rarely a good
idea to directly invert matrices. Fortunately, it is also not necessary here. Note that any
vector |z〉 = G|y〉 coincides with the (unique) solution of the equation L|z〉 = (I − P )|y〉
constrained by the condition 〈ρ|z〉 = 0, as immediately follows from observing that LG =
GL = I−P and 〈ρ|G = 0. Hence, objects like GL(1)GL(1)|1〉 or G2L(2)|1〉 can most conve-
niently be determined by solving a linear system of M equations with subsequently updated
right-hand side. The number of such linear problems is fixed by the order of cumulants to be
computed. This formulation also invites an application of fast iterative methods and various
schemes to store sparse matrices in the memory, which enable to remarkably increase the
system size.

The second basic ingredient of the proposed algorithm is the computation of the sta-
tionary distribution 〈ρ|, for which one can choose among the available algorithms on the
market. A possibility is to implement an Arnoldi scheme, or simply note that the iteration of
〈ρi+1| ← 〈ρi |(L+ cI) converges to the eigenvector of (L+ cI) with largest modulus, which
coincides with 〈ρ| if the real constant c > 0 is larger than the modulus of all eigenvalues
of L.

Let us finally stress that the estimates of cumulants obtained in this paper, besides having
their own theoretical interest, have the advantage of avoiding the use of finite differences,
in this case of eigenvalues of Lσ obtained at different values of the parameters σ . Like
it is convenient to estimate the specific heat of a system from the variance of the energy
distribution rather than from finite differences of the energy at different temperatures, we
avoid the calculation of derivatives from finite differences, also because they usually hide
dangerous dependencies on parameter step-sizes and the numerical instability connected
with this. The latter is expected to be particularly problematic for cumulants of higher order.
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